Open Innovation Challenges

Wildfire Ignition Prevention

Open Challenge: Alternatives to current undergrounding methods, including level-grounding

Wildfire Ignition Prevention
Deadline for concept summaries: January 14, 2021

Sponsored by

pg&e logo


Undergrounding distribution power lines eliminates almost all risk of infrastructure-caused wildfire ignitions; however, the process can be costly, slow, and bounded by physical limitations and irregular terrain. While these constraints have limited the extent of undergrounding in the utility sector, efforts to bring conduit at or below grade could be accelerated if the process could be faster and less costly.

Desired properties

  • Enable undergrounding for at a meaningfully lower cost across diverse terrain conditions
  • Surveying and mapping of trenching hazards such as boulders and other utility infrastructure
  • Level-grounding system for electrical conductor


Category 2: Alternatives to current undergrounding methods, including level-grounding

Problem statement

Undergrounding electrical lines eliminates nearly all risk of wildfire ignitions from transitioned electric assets. However, this process is currently expensive, labor-intensive, and often subject to physical limitations: the undergrounding construction process requires more space than overhead lines, is more disruptive and intrusive, and therefore typically occurs along main roads. Further, undergrounding is most useful in remote areas with irregular and rough terrain. Due to these constraints, undergrounding makes up only a small portion of grid hardening efforts nationwide. As PG&E plans to harden thousands of line-miles in coming years, finding novel ways to reduce the cost, time, complexity and uncertainty of undergrounding could substantially benefit utilities, landowners, and communities across California.

Possible approaches

Any technical solution or process innovation that provides cost-effective alternatives to overhead lines is welcome. One possible approach is through level-grounding infrastructure for the conduit, as opposed to under-grounding. Surveying technologies such as radar-based drone/computer vision mapping and real-time trenching guidance could reduce complications of the undergrounding process. Another area of opportunity is reducing the time and labor required for trench digging, including robotic boring and excavation, reducing the footprint required for burying lines (necessary for installation next to narrow mountainous roads and in scenic areas), and/or new techniques for installing, maintaining and accessing wires underneath roads.

Industrywide Market GapPotential Solution Category
Undergrounding excavation with
today’s technology is complex,
adding time and cost.
Level-grounding of conduit
(e.g. surface troughs)
Automation of trench digging
Major hazards (e.g., rocks, other
utility lines, etc.) often lie underneath
existing rights of way and can cause
unforeseen delays in the
undergrounding process.
Underground hazard identification prior
to trenching (e.g. surveying technologies such
as ground-penetrating radar)
Roads may need to be shut down for
undergrounding for extended periods
of time because undergrounding
adjacent to or under roads requires
significant area for conduit and access boxes.
Reduce either construction footprint or installation
footprint required for undergrounding, e.g. allow
undergrounding to take place on the side of the
road without impairing traffic flows, and in narrow

New techniques for accessing and maintaining wires
underneath roads
Terrain in High Fire-Threat Districts
is often irregular, making undergrounding
Drone/computer vision mapping and 3D printing of utility
infrastructure embedded with the terrain

Known approaches not of interest

Software-based and procedural management solutions are not of interest.

Key success criteria
  • Enable level-grounding or undergrounding at a cost of no more than $2M per mile, including labor (see cost / risk reduction curve below)
  • At least 35% reduction in cost for the same wildfire risk reduction or at least a 35% reduction in wildfire risk at the same cost
  • Demonstrated improvement over current state of the art technology
  • Commercially deployable within 4 years

*Note that this graph is illustrative and not necessarily representative of current costs.

More solicitations...
Wildfire Ignition Prevention

As system hardening focuses on updating overhead lines and equipment, PG&E has to consider over 30,000 line-miles of transmission and distribution assets in High Fire-Threat Districts in its operation. Industry-wide adoption of lighter, stronger, and/or more heat-resistant infrastructure has been limited by cost, availability and longevity.

Wildfire Ignition Prevention

As vegetation contact can be a major driver of wildfire ignitions, the California Public Utilities Commission (CPUC) requires specific clearances around power lines. By making current advanced practices of onsite vegetation management more efficient, utilities can reduce risk on the many thousands of line-miles in High Fire-Threat Districts.

Wildfire Ignition Prevention

PG&E operates over 30,000 line-miles of Transmission & Distribution (T&D) assets in High Fire-Threat Districts (HFTD). Current state-of-the-art technologies to detect faults in real-time and prevent ignition from these faults can reduce risk, but remain expensive, slow to install, and require tuning and maintenance to be effective.